[image: image1.png]
Sample

Development Standards

November 1, 1999

Developed by:
InStep Technologies, Inc.

5776 Stoneridge Mall Rd, Suite 280

Pleasanton, CA 94588

(925) 225-1016

Table of Contents

iTable of Contents

Overview
1
Managing Your Modules
2
Name the Module
2
Comment the Module
2
Working With Forms
4
Name Controls on Forms
4
Use Control Arrays
5
Name Menus
5
Building Your Procedures
6
Name the Procedure
6
Comment for Clarity
6
Build with Structure
7
Handle Procedure-Level Errors
7
Follow Basic Conventions
8
Working With VB Syntax
9
General Coding
9
Statements
9
String Handling
9
Working With Variables
10
Declare Scope
10
Name Variables
10
Constants
11
Use Constants
11
Building The Database
12
Define the Tables
12
Define the Fields
12

Overview

Development standards include such things as coding standards, naming conventions, source code control techniques, and testing strategies. Defining development standards provides many benefits:

· It helps you manage the complexity of the software and keeps your code organized so it is easy to find things.

· It provides a consistent look to easily read and understand the code. Any developer familiar with the standards will be able to pick up any piece of the code and understand the basic conventions used. This is helpful when you do code walk-throughs, when your testing team does code reviews, and for multiple developer projects.

· It ensures a smooth transition to the maintenance activities, especially if some else will be providing those activities.

This document is not meant to define the standards to be used by all development teams. Rather, it meant as a starting point for your team to define its own development standards.

Managing Your Modules

Modules are the basic building blocks of a Visual Basic application. They include forms, class modules, standard modules, and so on. Managing these building blocks helps you to better manage and maintain your applications.

To manage these modules you need to give the module a good name and give it a good general description comment.

Name the Module

Every module you use in your Visual Basic application has a logical name used within the application and a physical file name. It is easiest to keep track of these modules if you use the same name for both the logical name and the physical file name.

The name should describe the basic purpose of the module, and should have the appropriate prefix:

Prefix
Object Type

frm
Form

C
Class

I
Interface

M
Standard Module

Examples:

· frmSupplier

· CSupplier

· MMain

Comment the Module

All modules (forms, standard modules, classes, and so on) will begin with a brief comment describing the general purpose of the module and any revisions made to the module. It will appear as follows:

'**

' Name:

' Author:

' Date:

' Description:

' Revisions:

'**

NOTE: You could build a template for each module type that includes this header along with any standard coding required in each module. Developers could then start with that template when creating a new module.

Working With Forms

When working with forms, there are some additional standards and conventions.

Give Forms a Consistent Look

For a great looking and usable user interface, it is important that all of the forms behave consistently. Define a standard set of buttons and place them in a similar location on all forms.

NOTE: To help ensure consistency, define a set of form templates and use them for all forms in the project.

Name Controls on Forms

Every control on a form should be named. The only possible exception to this is any label that is not referenced by any code.

The following are the standard prefixes to use when naming a control added to a form:

Prefix
Control Type

cbo
Combo box

chk
Check box

cmd
3D command button

col
Collection

ctl
Control

dat
Data

db
Database

dcbo
Date combo box

dir
Dir list box

dlg
Common dialog

drv
Drive list box

fil
File list box

frm
Form

fra
Frame

gau
Gauge

gra
Graph

grd
Grid

hsb
Horizontal scroll bar

img
Image

key
Keyboard key status

lbl
Label

lin
Line

lst
List box

mnu
Menu

opt
Option button

pic
Picture box

pnl
3-D panel

ps
prepared statement

rpt
Report

rs
Result set

shp
Shape

spn
Spin control

tv
Treeview

txt
Text box

tmr
Timer

vsb
Vertical scroll bar

For controls not listed in this table, define a unique three-character prefix. However, it is more important to be clear than to stick to three characters.

Use Control Arrays

When feasible, use control arrays instead of separately named controls. For example, instead of 15 individually named text boxes on a form, create and name one text box and then use that same name for all other text boxes on the form.

The benefits of this technique are:

· When VB creates the controls, it only has to create one of the controls in the control array. This increases the limit on the number of controls you can have on the form and improves performance.

· You get one event procedure for the control array instead of one for each control. This prevents duplicate code.

· It is easier to work with a set of controls that are in an array. You can cycle through them using For Each/Next to move them or set their properties.

When using a control array, be sure to define constants for the index numbers and declare those constants in the General Declarations section.

Name Menus

One method of naming menus and menu options is to use the mnu prefix with the menu abbreviation and then the menu option name. An alternative option is to define all of the menu options for a menu as one control array.

Menu Option
Name

Help, Contents
mnuHelpContents OR mnuHelp(mainHelpContentsOption)

File, Open
mnuFileOpen OR mnuFile(mainFileOpenOption)

Format, Character
mnuFormatCharacter OR mnuFormat(mainFormatChrOption)

File, Send, Fax
mnuFileSendFax OR mnuFileSend(mainFileSendFaxOption)

File, Send, E-mail
mnuFileSendEmail OR mnuFileSend(mainFileSendEmailOption)

Using the alternative approach puts all of the code for one menu in one event procedure, which may make your code easier to follow. If you use this technique, but sure to define constants for the control array index numbers. This allows for changes to the menus without changing all references to that menu option and makes the code easier to read.

Building Your Procedures

Each module in your application is comprised of a General Declarations section and a set of procedures. These procedures can be event procedures, private procedures, or your own public procedures or methods.

To build great procedures, you need to give the procedure a good name, add comments for clarity, build the code with a basic structure for readability, handle errors, and follow some basic conventions.

Name the Procedure

· The standard event procedures are automatically named with <object>_<verb> syntax, such as Class_Terminate or txtName_Click. You may want to follow that standard in defining your own events as verbs.

· The public Property procedures will be the public interface to the properties for the class. They should be named with a logical property name, without a prefix or suffix. For example, Visual Basic controls provide properties such as Top and Caption. Your properties could be named Address, DateofBirth, and so on. Notice that these names are normally nouns.

· The public subroutine and functions will be the public interface to the methods for the class. They should also be named with a logical action name, without a prefix or suffix, following a <verb><object> syntax. For example, Visual Basic controls provide methods such as Move, Add, and SetFocus. Your methods could be named Display, WriteFile, and so on. Notice that these names are normally verbs.

· Private subroutines and methods frequently follow a <verb><object> syntax as well, as in OpenFile or CalcPay.

Comment for Clarity

All procedures (subroutines, functions and property procedures) begin with a brief comment describing the functional characteristics of the routine as well as the parameters passed to and returned from the routine.

NOTE: If you cannot describe the procedure with a brief comment, maybe the routine is trying to do too much and should be broken into several routines.

This description should not describe the implementation details (how it does it) because these often change over time, resulting in unnecessary comment maintenance work or, worse, erroneous comments. The code itself and any necessary local comments will describe the implementation.

Rather, this comment should describe the purpose of the routine and any special information one would need to use or maintain it.

'**

' Name:

' Purpose:

' Parameters:

' Returns:

'**

Comment as you code. The comments will then be correct and will be there to help you remember the purpose of the routine. By making it a policy to change the comments when the purpose of the code changes, you'll keep the comments up to date.

Some developers write the comments before they code each routine using the comments as pseudo code or program design language (PDL) for the routine. Using comments in this manner is described in detail in Code Complete, Steve McConnell.

Build with Structure

· Use indents/tabs to show nesting program structures. Set the Tools/Options/Editor/Tab Width setting in Visual Basic to 3 characters.

· Routines should not normally be longer than one page long on the screen. Routines longer than one page should be broken into subroutines.

· No line should be longer than one page wide. Lines longer than one page wide should be broken using the line continuation character.

· Each line should contain only one statement. There should not be multiple statements on one line.

Handle Procedure-Level Errors

Error handling is critical in all applications. In Visual Basic, error handling is done at the procedure level. Each nontrivial procedure should include error handling.

As each procedure is written, some time should be spent finding the most common errors that can be generated in that procedure and writing code to handle them properly in that procedure.

In procedures that are not part of the user interface (in a module other than a form), error trapping will be done using the standard On Error Goto syntax. The procedure will then raise an error to the calling procedure.

Typically the procedure with its error handler would be as follows:

Public Function xxx()

On Error Goto ErrorHandler

Code...

Code...

Exit Function

ErrorHandler:

With Err

.Raise .Number, .Source, .Description

End With

End Function

The error number raised should be the VB error when appropriate. For errors that are not VB errors, such as validation or business rule violations, an error number should be defined. The error number must be generated greater than vbObjectError + 512. The errors that can be generated by a class should be exposed to the other parts of the application using an ENUM statement.

NOTE: At no time should a message box be displayed from a procedure that could be included in a component.

In the form code, message boxes can be displayed so errors can be handled as follows:

On Error Goto ErrorHandler

Code...

Code...

Exit Function

ErrorHandler:

Select Case Err.Number

Case PartDescriptionError

Msgbox "Please enter 1 to 64 characters for the part description"

Case Else

g_err.LogError

End Select

End Function

The contents of any message displayed to the user should be user-friendly and not too technical. Technical details should be logged to a log file.

Follow Basic Conventions

· Restrict exit of a routine to a single point. In other words, avoid the "Exit" keyword, except to bypass error handling. See Error Handling for more information.

Working With VB Syntax

General Coding

· All modules include Option Explicit to require variable declarations.
This helps prevent typographical errors in your code.

· Don't use magic numbers.
Magic numbers are those numbers in the code that have some magical meaning only to the person who put them there. Instead of using magic numbers and attempting to remember them, you can use the constants provided by Visual Basic or create your own constants. For example, instead of using Screen.Mousepointer = 11, use Screen.Mousepointer = vbHourglass. Constants instead of magic numbers are especially useful for control array index values, help context ID numbers, and error code numbers.

Statements

· Case statements should include a Case Else.
Many uncaught bugs are introduced into code because a Case statement variable is not what is expected. Without a Case Else statement, an invalid Case statement variable can cause no code in the Case statement to be executed and no error is generated. Using a Case Else ensures that there is a default case, even if it simply displays an error message or logs an error to an error log file.

· Don't use IIf function.
This is a particularly inefficient function and should not be used unless absolutely necessary.

String Handling

· Strings should be placed in the resource file and not hard coded.

· Always use "&" when concatenating strings.
Visual Basic has many features for automatically converting data types. To ensure that you are performing the operation you think you are performing, always use the appropriate operator. For example, when concatenating strings, use the concatenation operator (&) instead of the numeric addition operator (+).

Working With Variables

Declare Scope

· Explicitly state the scope of all variables (Public or Private).

· Define each variable with the lowest possible scope. For example, use a local variable if possible. If not possible, make it module level.

· Minimize the use of public variables.

· Declare all module-level variables in the General Declarations section.

· Declare all local variables at the top of the procedure.

Name Variables

A variable name consists of three components:

1. The scope prefix:

Prefix
Scope

g_
global

m_
module-level

st_
static

(none)
local or parameters

2. The data type prefix:

Prefix
Data Type

b
Boolean

bt
Byte

col
Collection

d
Double - 64 bit signed quantity

dt
Date+Time

err
Error

f
Float/single - 32-bit signed floating point

h
Handle

i
Integer

l
Long - 32 bit signed quantity

obj
Object

s
String

v
Variant

udt
User defined type

3. The variable purpose: A logical description of the variable usually in Title Case. Should be long enough to describe its purpose.

Examples:

m_objCurrency
Module level object variable
sFieldName

Local string variable
bIsDirty

Local boolean variable
m_bIsDirty

Module level boolean variable
g_oApp

Global object variable

Use Constants

· Constants are more efficient than variables and should be used in place of variables or literal values whenever possible.

· Constants follow the same basic naming conventions as variables. Public constants should have a three- or four-letter lowercase prefix identifying the name of the component and two- or three-letter uppercase characters defining the enumeration. This minimizes the chance of a conflict with constants in other components used in an application.

Building The Database

Defining standards for building the database are just as important as the standards used in building the code.

Define the Tables

· All table names will be descriptive and will be the singular form of the object they describe. For example, Part and Supplier.

· All tables will contain a primary key of type long integer that is unique and meaningless.

· When other tables use this key as a foreign key, the field name will be identical to the primary key field name. For example, PartID is the primary key in the Part table. In the SupplierPart table, the foreign key will be PartID.

· All tables will contain the user ID of the user who last saved the record. The field name for this field will always be UserID

· All tables will contain the timestamp of the last update. The field name for this field will always be TimeStamp.

Define the Fields

· Field names will use a Capital letter to identify each word of name-phrase. For example, PartSupplier.

· Generally, field names will be preceded by the Table name. This will eliminate any concern about the same name having a different meaning in different tables. It will also eliminate the need to qualify field names when tables are joined in a record set.

· Description fields will be string of length 255.

· String fields that are indexed will be of length 50.

· Other general string fields will be of length 100, unless a business rule defines a different length.

Experience in Software Systems,
ii
Confidential

