Telnet Control

The telnet control is used to provide low level control over a telnet client. It was written using RFC1143 as a guide and does implement the Q method discussed in that RFC. Because it is RFC1143 compliant it is also rfc854 compliant.

The telnet control was written by Shane Stewart (sstewart@networld.com). Shane Stewart allows you to use this control and to also modify it to suit your needs for non-commercial and educational purposes only. Shane Stewart retains the copyright of this control. Copyright 2000 by Shane Stewart

This document discusses the events, methods and properties the control raises and suggests some ways these be used in the implementation of a telnet client. This control is invisible to the user and is not a full telnet client but rather a control to assist in creating the client by eliminating the need for low level parsing of incoming data from the Winsock. It will keep track of what options are enabled on both sides of the circuit.

Events:

ConnectionClosed

ConnectionOpened

DebugMsgRecieve

HeRequestHimEnable

HeRequestUsEnable

HimStateChange

RecievedAbort

RecievedAbortOutput

RecievedAreYouThere

RecievedBreak

RecievedDataMark

RecievedEraseCharacter

RecievedEraseLine

RecievedGoAhead

RecievedInterruptProcess

RecievedSuspend

SubNegotiationRecieved

TermDataArive

UsStateChange

Methods:

Connect

Disconnect

GetTermData

SendData

SubNegotiationSend

Others

Properties:

ConnectState

HimOptionState

UsOptionState

RemoteHost

RemoteHostIP

RemotePort

Event ConnectionClosed()

The ConnectionClosed event is raised whenever the telnet connection is closed for any reason. It does not separate whether we closed the port or the remote system closed the port.

This can be used to enable an open command when the connection closes and to signal the user that the connection has closed.

There are no other values associated with this event.

Event ConnectionOpened()

The ConnectionOpened event is raised whenever a connection is fully established between the local host and the remote system.

This event will not fire until the connection is fully up and therefore a port can be open before this event is raised. This means that other methods should be used to disable a connect command to prevent it from trying to open a port that is already trying to open.

It is possible for the connection to not be open and also not be closed for a length of time while the local host resolves names and tries to establish a connection with the remote system.

Event DebugMsgRecieve(ByVal Message As String)

The DebugMsgRecieve event is fired whenever an event occurs that should be reported to the designer. The messages here have no real value to the user of your application and should not be used to signal any kind of information to your program or the user.

The string returned with this event is a single line that tells the developer important information about the state of the control. This is usually used with a debug.print statement.

Example:

Private Sub Telnet1_DebugMsgRecieve(ByVal Message As String)

Debug.Print Message

End Sub

Event HeRequestHimEnable(ByVal OptionNumber As IACOption)

This event is raised whenever the remote system asks to enable an option on his side. This should be replied to using the HimOptionState property. There is a timeout value preset to this event that will make the telnet control respond with a DON’T (negative) if you do not respond with the HimOptionState property within 0.3 seconds. This was needed to prevent problems during negotiation. Even though the control will respond with a DON’T on its own it is desirable to speed up the negotiations by using HimOptionState to send a OptDisable to any requests you want to deny thus not making the rest of the negotiations wait.

Also note that since this event only occurs if the remote computer send a request to us. Code put here will not initiate a request but only answer one.

EXAMPLE:

Private Sub Telnet1_HeRequestHimEnable(ByVal OptionNumber As IACOption)

Select Case OptionNumber

Case ECHO

Telnet1.HimOptionState(ECHO) = OptEnable

Case SGA

Telnet1.HimOptionState(SGA) = OptEnable

Case Else

Telnet1.HimOptionState(OptionNumber) = OptDisable

End Select

End Sub

Here we say that we want him to enable ECHO and Suppress Go Ahead if he offers but to deny any other requests. By denying the requests this way we greatly speed up negotiation because we do not wait for the 0.3 second time out.

WARNING: It should not be assumed that because a request was replied to in the positive that an option is enabled. You must use the HimOptionState property to determine if the option is enabled. Please see the notes on the HimOptionState property for further information.

Event HeRequestUsEnable(ByVal OptionNumber As IACOption)

This event is raised whenever the remote system asks to enable an option on our side. This should be replied to using the UsOptionState property. There is a timeout value preset to this event that will make the telnet control respond with a WONT (negative) if you do not respond with the HimOptionState property within 0.3 seconds. This was needed to prevent problems during negotiation. Even though the control will respond with a WONT on its own it is desirable to speed up the negotiations by using UsOptionState to send a OptDisable to any requests you want to deny thus not making the rest of the negotiations wait.

Also note that since this event only occurs if the remote computer sends a request to us. Code put here will not initiate a request but only answer one.

EXAMPLE:

Private Sub Telnet1_HeRequestUsEnable(ByVal OptionNumber As IACOption)

Select Case OptionNumber

Case SGA

Telnet1.UsOptionState(SGA) = OptEnable

Case Else

Telnet1.UsOptionState(OptionNumber) = OptDisable

End Select

End Sub

Here we say that we will enable Suppress Go Ahead if he asks but to deny any other requests. By denying the requests this way we greatly speed up negotiation because we do not wait for the 0.3 second time out.

WARNING: It should not be assumed that because a request was replied to in the positive that an option is enabled. You must use the UsOptionState property to determine if the option is enabled. Please see the notes on the UsOptionState property for further information.

Event HimStateChange(ByVal OptionNumber As IACOption)

The HimStateChange event is raised whenever there is a change in an option state for the remote machine. For example if we request that the remote machine suppresses go aheads then if the remote machine agrees to suppress go aheads there will be a state change. There will not be a state change if the remote machine denies the request because the default value for suppress go ahead is disabled.

It is not recommended that the programmer use the OptionNumber returned with this event to signal that something was enabled or disabled because then you are duplicating a function the control already provides. The telnet control keeps track of whether an option is enabled or disabled for the remote machine and can be accessed with the HimOptionState property.

This event is only here to signal that the state of an option has changed from it previous value and may not serve any purpose depending on your implementation.

If you do use this event it is recommended that after you receive the event you use the HimOptionState property to get the new value.

EXAMPLE:

Private Sub Telnet1_HimStateChange(ByVal OptionNumber As IACOption)

Debug.print “new state of remote machine: “ & OptionNumber &_

 “ is “ Telnet1.HimOptionState(OptionNumber)

End Sub

Event RecievedAbort()

We received a telnet Abort command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedAbortOutput()

We received a telnet Abort Output command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedAreYouThere()

We received a telnet Are You There command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedBreak()

We received a telnet Break command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedDataMark()

We received a telnet Data Mark command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedEraseCharacter()

We received a telnet Erase Character command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedEraseLine()

We received a telnet Erase Line command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedGoAhead()

We received a telnet Go Ahead command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedInterruptProcess()

We received a telnet Interrupt Process command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event RecievedSuspend()

We received a telnet Suspend command from the remote host.

I have not fully implemented these features yet and I am not sure if this is the best way to handle these events. If you have some ideas please let me know.

Event SubNegotiationRecieved(SBOption As String)

The SubNegotiationRecieved event is raised when we receive a complete sub negotiation string from the host. The string returned with the event is the sub negotiation string with spaces between each character to make is easier to parse. You could use the split function or some other function to process this string.

This command is often used in Term type negotiations as discussed in rfc1091.

There is a corresponding method SubNegotiationSend used to send a reply to this request.

Event TermDataArive(ByVal DataLength As Long)

The TermDataArive event is raised when there is terminal data ready to be received by the console. The DataLength value is a long that contains the length of the string of data waiting for pickup.

Use the GetTermData method to get the actual data.

The DataLength value may or may not have any practical value in your code. You cannot specify how much of the data you want to retrieve with GetTermData so at the most it can help you ready an array. I just thought it would be nice to include it and there is no performance hit for it.

Event UsStateChange(ByVal OptionNumber As IACOption)

The UsStateChange event is raised whenever there is a change in an option state for this machine. For example if the remote machine requests that we suppress go aheads and then we agree to suppress go aheads there will be a state change. There will not be a state change if we deny the request because the default value for suppress go ahead is disabled.

It is not recommended that the programmer use the OptionNumber returned with this event to signal that something was enabled or disabled because then you are duplicating a function the control already provides. The telnet control keeps track of whether an option is enabled or disabled for this machine and can be accessed with the UsOptionState property.

This event is only here to signal that the state of an option has changed from it previous value and may not serve any purpose depending on your implementation.

If you do use this event it is recommended that after you receive the event you use the UsOptionState property to get the new value.

EXAMPLE:

Private Sub Telnet1_UsStateChange(ByVal OptionNumber As IACOption)

Debug.print “new state of this machine: “ & OptionNumber &_

 “ is “ Telnet1.UsOptionState(OptionNumber)

End Sub

Method: Connect (Optional ByVal RemoteHost As Variant, Optional ByVal RemotePort As Variant)

The connect method sends the command to connect to the remote host. It has optional values RemoteHost and RemotePort. If the optional values are not supplied then the current values are used.

The ConnectionOpened event is not raised until the connection is established.

Method: Disconnect()

The disconnect method causes the telnet session to disconnect and then raises the ConnectionClosed event. This method takes no arguments.

Method: GetTermData() As String

This method returns a variable length string that contains data for the terminal. The length of the string is given in the TermDataArrive event. This string will NOT contain any telnet commands because they are parsed and removed first.

Method: SendData(ByVal DataToSend As String)

The SendData method needs the argument DataToSend. This method is used to send terminal data from the terminal. Do not use this to send telnet commands, instead us the proper method or property.

Method: SubNegotiationSend(ByVal SBOption As String)

The SubNegotiationSend method is used to send sub negotiation data. Do not send the SB/SE commands with the information because the telnet control will add the appropriate header and footer to the data you send.

Method: Others

There are several other send methods available but I will not take the time to explain them right now. They are pretty evident by their names. None of these events take any arguments.

Property: ConnectState

The connect state property is mapped to the Winsock ConnectState property. The syntax is exactly the same. Please see the ConnectState property in VB help for the Winsock control.

Property: HimOptionState

The HimOptionState property allows you to check the state of telnet options on the remote side of the connection, and to request enable and disable of those options. It requires the argument OptionNumber which is an enumerated type with values shown below. If the HimOptionState property is used on the left side of an argument then it returns the current state as either OptEnable or OptDisable. When used on the right side it also requires the argument NewState which is either OptEnable or OptDisable.

Do not assume that because you enabled an option that it is enabled. This is only a request to enable and you should wait for the HimStateChange event or some other amount of time and then check the state of the option before you know its enabled. The other side can always reject your request. If you use the HimOptionState property on the right side of the command then you know its enabled because this checks the state of the qoption and returns enabled only when both sides have agreed to enable.

EXAMPLE:

Telnet1.HimOptionState(SGA) = OptEnable

If Telnet1.HimOptionState = OptEnable Then process my commands

BINARYt = 0 'rfc856

ECHO = 1 'rfc857

RECONNECT = 2

SGA = 3 'rfc858

AMSN = 4

STATUSt = 5 'rfc859

TIMINGMARK = 6 'rfc860

RCTAN = 7

OLW = 8

OPS = 9

OCRD = 10

OHTS = 11

OHTD = 12

OFFD = 13

OVTS = 14

OVTD = 15

OLFD = 16

XASCII = 17

LOGOUT = 18

BYTEM = 19

DET = 20

SUPDUP = 21

SUPDUPOUT = 22

SENDLOC = 23

TERMTYPE = 24 'rfc1091

EOR = 25

TACACSUID = 26

OUTPUTMARK = 27

TERMLOCNUM = 28

REGIME3270 = 29

X3PAD = 30

NAWS = 31

TERMSPEED = 32

TFLOWCNTRL = 33

LINEMODE = 34

DISPLOC = 35

ENVIRONt = 36 'rfc1408

AUTHENTICATION = 37

NEWENVIRON = 39 'rfc1572

EXTENDED_OPTIONS_LIST = 255

Property: UsOptionState

The UsOptionState property allows you to check the state of telnet options for this machine, and to request enable and disable of those options. It requires the argument OptionNumber which is an enumerated type with values shown in HimOptionSate. If the UsOptionState property is used on the left side of an argument then it returns the current state as either OptEnable or OptDisable. When used on the right side it also requires the argument NewState which is either OptEnable or OptDisable.

Do not assume that because you enabled an option that it is enabled. This is only a request to enable and you should wait for the UsStateChange event or some other amount of time and then check the state of the option before you know its enabled. The other side can always reject your request. If you use the UsOptionState property on the right side of the command then you know its enabled because this checks the state of the qoption and returns enabled only when both sides have agreed to enable.

EXAMPLE:

Telnet1.UsOptionState(SGA) = OptEnable

If Telnet1.UsOptionState = OptEnable Then process my commands

Property: RemoteHost

The RemoteHost property is mapped to the Winsock RemoteHost property and has the same arguments. Refer to the Winsock RemoteHost property for more help.

Property: RemoteHostIP

The RemoteHostIP property is mapped to the Winsock RemoteHostIP property and has the same arguments. Refer to the Winsock RemoteHostIP property for more help.

Property: RemotePort

The RemotePort property is mapped to the Winsock RemotePort property and has the same arguments. Refer to the Winsock RemotePort property for more help.

