General DOM / XML Information:

Microsoft XML, version 2.0 (Msxml.dll) reference needed

The DOMDocument is needed to create the nodes contained within the XML document, and is used to

reference the XML document itself, with methods load, save, etc.

Types of nodes include:

IXMLDOMNode – Node that acts as a folder to contain other nodes – or can be used as a text node

IXMLDOMText – A text node that contains only a value (Can get more flexibility with IXMLDOMNode)

Node names must start with a letter to be valid

The format of the XML document represtenation of the nodes is as follows:

Node without children:

<node.baseName>node.text</node.baseName>

Node with children:

<node.baseName>

<childname1.basename>childname1.text</childname1.text>

<childname2.basename>childname2.text</childname2.text>

…

</node.basename>

NOTE: When a node has children, node.text returns the text value of all children

Setting node.text will cause any children of that node to be deleted

Creating a DOM document:

Creating a new DOM document:

Public xml As New DOMDocument

Public root As IXMLDOMNode

Set root = xml.createNode(1, "RootName", "")

xml.appendChild root

Loading an existing XML file into the DOM:

Public xml As New DOMDocument

Dim bLoaded as Boolean ‘ Return value stating the success of the load

bLoaded = xml.Load ("V:\DEV\ISD\DOMAppco\appco\test.xml")

Set root = xml.documentElement

Manipulating the DOM document:

The DOM document can only contain one node at the root level

Additional data is broken up into nodes contained in that root node

The root node and any other subnode may contain any number of children

Adding a child node to the root node:

‘ The code for adding nodes to the newNode is the same as this also

Dim newNode As IXMLDOMNode

Set newNode = xml.createNode(1, "NodeName”, "")

newNode.Text = “My Value”

root.appendChild newNode

Removing a child node from the root node:

CurrentNode.childnodes returns all the children of the current node as an IXMLDOMNodeList

This reference to the children of the node is needed to delete a certain child of the node

To remove nodes that are deeper than the root children, one way to retrieve the node and its child

Is to modify the Value() function given below so that it returns the node desired, instead of node.text

Dim tempNode As IXMLDOMNode

Dim nodeList As IXMLDOMNodeList

Set nodeList = root.childNodes

‘ Remove a child at a specific index

root.removeChild nodeList.Item(0)

‘ Or remove certain nodes based on conditions

For Each tempNode In nodeList

If … then

root.removeChild tempNode

End If

Next

Inserting nodes into the correct location:

You may sometimes want to insert a node as a subnode of another if certain properties match

In the following function, the values in the “MyName”, “Level”, and “Instance” subnodes are checked

against the values given by “parent”, “parentLevel”, and “parentInstance”. If all three values match, the tempNode is added as a child of the current node, otherwise the function recursively examines the current node’s subnodes until the parent is found.

' Sub:

PlaceNode

' Description:
This sub searches for the location of the parent node of the given tempNode

'
and when the parent node is found, tempNode is added as a child to that node

'
 Operates recursively until the parent node is found

' Parameters:
parent

The value to match with the parent’s “MyName” node

‘

parentLevel
The value to match with the parent’s “Level” node

‘

parentInstance
The value to match with the parent’s “Instance” node

' Usage:
Call PlaceNode(“Name of Parent”, “Level of Parent”, “Instance of Parent”, _

‘

root, tempNode)

'

Private Sub PlaceNode(parent As String, parentLevel As String, parentInstance As String, curNode As IXMLDOMNode, tempNode As IXMLDOMNode)

 On Error GoTo NodeError

 Dim node As IXMLDOMNode

 Dim nodeList As IXMLDOMNodeList

 Set node = curNode.selectSingleNode("MyName")

 ' Debug.Print node.Text

 If node.Text = parent Then

 Set node = curNode.selectSingleNode("Level")

 If node.Text = parentLevel Then

 Set node = curNode.selectSingleNode("Instance")

 If node.Text = parentInstance Then

 curNode.appendChild tempNode

 Exit Sub

 End If

 End If

 End If

NodeError:

 Set nodeList = curNode.childNodes

 For Each node In nodeList

 If node.lastChild.hasChildNodes Then

 Call PlaceNode(parent, parentLevel, parentInstance, node, tempNode)

 End If

 Next

End Sub

Finding information about a specific node:

The following code shows how to return the specified node’s text element

This code may be modified to return any desired information about the node, including the node itself

Another

NOTE: If possible, especially when returning values from multiple nodes, the closest possible node should

be used as the startNode to avoid the recursive overhead.

Private Sub Command1_Click()

Dim root As IXMLDOMNode

Dim nodeValue As String

Dim bLoaded As Boolean ' Return value stating the success of the load

bLoaded = xml.Load("V:\DEV\ISD\DOMAppco\appco\test.xml")

if bLoaded then

Set root = xml.documentElement

nodeValue = Value(root, "a1mhg/adestadd")

End If

End Sub

' Function: Value

' Description: This function searches for the subnode(s) of the given startNode

' and when the specified node is found, its text value is returned

' Operates recursively until the specified node is found

' Parameters: startNode the node the search is originated from

' searchString the subnode structure specifying where to find the

' node of interest

' Returns: if the node is found, the text value of the specified node

' Otherwise 'NODE NOT FOUND' is returned

' Usage: nodeValue = Value(root, "Node1/Node2/Node3/.../searchNode")

'

Private Function Value(startNode As IXMLDOMNode, searchString As String) As String

 Dim tempNode As IXMLDOMNode

 Dim nodeList As IXMLDOMNodeList

 Dim intLength As Integer

 Dim nodeName As String

 Dim lastLevel As Boolean

 intLength = InStr(1, searchString, "/") - 1

 If intLength > 0 Then

 nodeName = UCase(Mid(searchString, 1, intLength))

 Else

 nodeName = UCase(searchString)

 lastLevel = True

 End If

 Set nodeList = startNode.childNodes

 For Each tempNode In nodeList

 If UCase(tempNode.baseName) = nodeName Then

 If Not lastLevel Then

 Value = Value(tempNode, Mid(searchString, intLength + 2))

 Exit Function

 Else

 Value = tempNode.Text

 Exit Function

 End If

 End If

 Next

 Value = "NODE NOT FOUND"

End Function

Saving the DOM Document:

The DOM document has a built-in save function that saves the XML structure to a file

Xml.save(“C:\filename.xml”)

However, this output is in a hard to read format if you plan on viewing/editing this document with Word or Notepad. Instead of putting elements on separate lines and indenting each level, the elements are simply seperated by spaces. If this is a concern, the following code is more useful for saving.

filenum = FreeFile

Open App.Path & "\test.xml" For Output As filenum

' Indents the XML output for readability

Print #filenum, FormatXML(root)

Close filenum

‘ Function:
FormatXML

‘ Description:
This function traces through the tree of nodes recursively, putting each node element on a

‘
separate line and indenting a tab level from the node it is an element of. This causes the

‘
.xml text file to look similar to the Internet Explorer view of the file for better readability.

‘ Parameters:
ptrNode

The node on which to start formatting the XML stream

‘
iTabLevel
The level of indention to start at

‘ Returns:
A formatted string representing the XML output of the node given by ptrNode and all

‘
nodes contained within that node

‘ Usage:
Print #filenum, FormatXML(root)

Private Function FormatXML(ptrNode As MSXML.IXMLDOMNode, Optional iTabLevel As Integer = 0) As String

Dim bMixedTextNode As Boolean

Dim bHasOnlyATextNode As Boolean

Dim i As Integer

 With ptrNode

 Select Case .nodeType

 Case NODE_DOCUMENT, NODE_DOCUMENT_FRAGMENT

 'all child nodes of the document should be at the same indent Level

 'just iterate over them and recurse with 0 indent

 For i = 0 To .childNodes.length - 1

 FormatXML = FormatXML & FormatXML(.childNodes(i))

 Next i

 Case NODE_TEXT 'should render the same way the default IE5 stylesheet does for mixed content

 'figure out if we're in some mixed content

 bMixedTextNode = (.parentNode.childNodes.length > 1) 'if this text node has any siblings it's in mixed content

 'if mixed indent this string

 If bMixedTextNode Then FormatXML = String(iTabLevel, vbTab)

 'we're gonna strip out any tabs and carriage returns from the Text

 FormatXML = FormatXML & Trim(Replace(Replace(.xml, vbCrLf, " "), vbTab, " "))

 'if mixed add cariage return

 If bMixedTextNode Then FormatXML = FormatXML & vbCrLf

 Case NODE_ELEMENT

 If .hasChildNodes Then

 'if the node has only one child and that child is text we won't add carriage return after opening tag

 bHasOnlyATextNode = (.childNodes(0).nodeType = NODE_TEXT) And (.childNodes.length = 1)

 End If

 'open the start tag

 FormatXML = String(iTabLevel, vbTab) & "<" & .nodeName

 'recurse over the attributes

 For i = 0 To .Attributes.length - 1

 FormatXML = FormatXML + FormatXML(.Attributes(i))

 Next i

 'properly close the start tag based on node's contents

 If Not .hasChildNodes Then 'no child nodes so it's an empty element

 FormatXML = FormatXML & "/>" & vbCrLf

 Else

 If bHasOnlyATextNode Then 'has only text for children - don't add carriage return

 FormatXML = FormatXML & ">"

 Else 'has child elements - add carriage return

 FormatXML = FormatXML & ">" & vbCrLf

 End If

 'recurse if there's children

 For i = 0 To .childNodes.length - 1

 FormatXML = FormatXML & FormatXML(.childNodes(i), iTabLevel + 1)

 Next i

 'properly indent and add the end tag

 If Not bHasOnlyATextNode Then FormatXML = FormatXML & String(iTabLevel, vbTab)

 FormatXML = FormatXML & "</" & .nodeName & ">" & vbCrLf

 End If

 Case NODE_COMMENT, NODE_CDATA_SECTION

 'if comment is on more than one line don't indent

 If InStr(1, .xml, vbCr) = 0 Then FormatXML = String(iTabLevel, vbTab)

 FormatXML = FormatXML & .xml & vbCrLf

 Case NODE_ATTRIBUTE

 'if there are double quotes in the attribute use single quotes to surrond the attr value

 If InStr(1, .Text, Chr(34)) > 0 Then

 FormatXML = " " & .nodeName & "='" & .Text & "'"

 Else

 FormatXML = " " & .nodeName & "=" & Chr(34) & .Text & Chr(34)

 End If

 Case NODE_ENTITY

 'and we would never want entites expanded

 Case Else

 'all other node types should just return their xml (properly indented)

 'these include - entity refs, pi's, notations, doctypes

 FormatXML = String(iTabLevel, vbTab) & .xml & vbCrLf

 End Select

 End With

End Function

